Page Content
Additive Manufacturing
In its beginnings, Additive Manufacturing (AM) was solely used for prototype construction. The continuous improvements of machining systems as well as the advancements in powder characterization of novel materials led to a constant increase of possibilities for industrial application. Despite their numerous advantages such as the possibility to manufacture high complex parts with inner contours or light weight structures the current deficits in reproducibility and productivity of AM processes limit their economical use. These challenges are in the scope of fundamental research projects at the IWF. The following AM technologies are in focus of our work:
- Selective Laser Melting (SLM)
- Selective Laser Sintering (SLS)
- Laser Powder Deposition (LMD)
- Fused Deposition Modeling (FDM)
- Workpiece to determine the production limits (SLM), PTC Berlin made of Polymer (SLS)
[1]
- © iwf
The current research topics in the field of Additive Manufacturing are:
- Fundamentals of SLM processes
- Material qualification
- System development
- Process chain qualification
- Additive process chain combination
- Digital integrated production
Jet Technologies
Due to their process inherent advantages jet technologies are used in a wide variety of industrial applications such as cleaning of sensitive surfaces, removal of functional layers and cutting of hard to machine materials (fiber-reinforced composites, titanium alloys etc.). The following robot guided jet technologies (with and without abrasives) are in the scope of research at the IWF to expand their industrial use:
- High pressure jetting (water, liquid CO2)
- Compressed air blasting (dry ice, CO2-snow, shot-peening)
- 3D-AWJ machining system, AWJ-Turning, waterjet cleaning/decoating, CO2-cleaning
[2]
- © iwf
The current research topics in the field of Jet Technologies are:
- Abrasive waterjet controlled-depth-milling
- Abrasive waterjet turning
- High pressure liquid CO2-cutting
- Surface pre-treatment
- Cleaning and decoating
Through the close cooperation with the Fraunhofer-Institute for Production Systems and Design Technology IPK the results of fundamental research can quickly and effectively be applied to industrial application. Further information can be found here [3].
Research projects
Project
title | Funding sponsor | Project
information |
---|---|---|
Shot peening of gears using water jet
technology | FVA | Link
[4] |
From prototype to
series production of SLM components with simultaneous reduction of the
processing costs | AiF | Link [5] |
Investigation of the combined process chain based on SLM
and LMD | DFG | Link
[6] |
Pre-contouring of
hard to machine materials using abrasive waterjets | DFG | Link [7] |
Development and manufacturing of
optimized working coil windings for electromagnetic forming employing
additive manufacturing techniques | DFG | Link [8] |
Grooving and trepanning of titanium
aluminides using abrasive waterjets | DFG | Link [9] |
In Situ diffraction at Selective Laser
Melting | DFG | Link
[10] |
Project
title | Funding sponsor | Project
information |
---|---|---|
Blasting with solid carbon dioxide as a pretreatment
process prior to glass coating | AiF | Link [11] |
Liquid CO2 as a blasting media for
cutting process | DFG | Link [12] |
LCD material recycling | AiF | Link [13] |
Blasting with carbon dioxide as a
pretreatment process prior to electroplating | DFG | Link
[14] |
Selected publications
Year | Author | Title | Link |
---|---|---|---|
2017 | Uhlmann, E.; John, P. | Advancements of the manufacturing technology
with high-pressure liquid CO2 jets. In: Proceedings of the 2017
WJTA-IMCA Conference and Expo in New Orleans, USA. Hrsg.:
WJTA®-IMCA®, 2017. | Link [15] |
2017 | Uhlmann, E.; Fleck, C.; Gerlitzky, G.; Faltin, F. | Dynamical fatigue
behavior of additive manufactured products for a fundamental life
cycle approach. Procedia CIRP, Volume 61, 2017, Pages 588-593, ISSN
2212-8271. | Link [16] |
2017 | Uhlmann, E.; Krohmer, E.; Hohlstein, F.; Reimers, W. | DEVELOPMENT OF AN
EXPERIMENTAL TEST SETUP FOR IN SITU STRAIN EVALUATION DURING SELECTIVE
LASER MELTING. Proceedings of the 28th Annual International Solid
Freeform Fabrication Symposium. PP 1472 - 1480.
2017. | Link [17] |
2016 | Uhlmann, E; Tekkaya, A.; Kashevko, V.; Gies, S.; Reimann, R.; John, P. | Qualification of CuCr1Zr for the SLM Process. 7th
International Conference on High Speed Forming, April 27th-28th 2016,
Dortmund, Germany. | Link [18] |
2016 | Uhlmann, E.; Bilz, M.; Mankiewicz, J.; Motschmann, S.; John, P. | Machining of hygroscopic materials by high-pressure
CO2 jet cutting. Procedia CIRP 23 (2016). | Link
[19] |
2015 | Uhlmann, E.; John, P.; Kashevko, V.; Gerlitzky, G.; Bergmann, A. | Quality
optimized Additive Manufacturing through Measuring System Analysis.
Proceedings of ASPE Spring Topical Meeting 2015. | Link [20] |
2015 | Faltin, F.; Flögel, K.; Uhlmann, E. | 3D NEAR NET
SHAPING OF HARD TO MACHINE MATERIALS VIA ABRASIVE WATERJET
CONTROLLED-DEPTH MILLING. 2015 WJTA-IMCA Conference and Expo, November
2-4, New Orleans, USA. | Link
[21] |
2014 | Baira, M.; Kretzschmar, M; Hollan, R.; Heitmüller, F.; Uhlmann, E. | Dry Ice
Blasting as a Pre-Treatment Process for Electroplating. WGP
Jahreskongress 2014, Advanced Materials Research, Vol. 1018, pp.
123-130, 2014. | Link [22] |
2013 | Flögel, K.; Faltin, F. | Waterjet turning of titanium
alloys. WGP Jahreskongress 2013. Nürnberg, Deutschland.
22./23.07.2013. | Link [23] |
2012 | Uhlmann, E.; Flögel, K.; Faltin F.; Kretzschmar, M. | Abrasive waterjet turning of high performance materials.
Procedia CIRP - Fifth CIRP Conference on High Performance Cutting.
2012; 1:409-413 | Link
[24] |
Dissertations
Year | Author | Title | ISBN |
---|---|---|---|
2018 | Bergmann,
André | Vorgehensweise zur Auslegung des
Laserstrahlschmelzens am Beispiel von
Wolframkarbid-Kobalt | 978-3-8396-1430-3 |
2017 | Faltin,
Fabian | Endkonturnahe Schruppbearbeitung von Titanaluminid
mittels Wasserabrasivstrahlen mit kontrollierter
Schnitttiefe | 978-3-8396-1309-2 |
2017 | Baira, El
Mustapha | Trockeneisstrahlen als Vorbehandlungsverfahren
vor dem Galvanisieren | 978-3-8396-1157-9 |
2016 | Kretzschmar,
Michael | CO2-Schneeentstehung und deren Wirkung auf die
Effekte beim
CO2-Schneestrahlen | 978-3-8396-1065-7 |
2016 | Motschmann,
Simon | Einfluss von Herstellungs- und Lagerungsfaktoren
auf die Eigenschaften von Trockeneispellets und das
Strahlergebnis | 978-3-8396-1014-5 |
2015 | König-Urban,
Kamilla | Additive Fertigung von
Nickelbasis-Superlegierungen mittels Laserstrahlschmelzen am Beispiel
von Diamalloy 4004NS | 978-3-8396-0978-1 |
2014 | Bilz,
Martin | Möglichkeiten und Grenzen des Strahlspanens
mittels
CO2-Hochdruckstrahlen | 978-3-8396-0661-2 |
2013 | Huynh, Quang
Ut | Einfluss der Oberflächenstrukturierung und
-texturierung eines Kunststoffsubstrats auf die Anhaftung von
Zellen | 978-3-8396-0631-5 |
2009 | El Mernissi,
Adil | Beeinflussung des
Vorbehandlungszustandes der Substratrandzone durch Trockeneisstrahlen
am Beispiel von Klebeverbindungen | 978-3-8167-7980-3 |
2008 | Krieg, Mark | Analyse der Effekte beim Trockeneisstrahlen | 978-3-8167-7625-3 |
ngsfelder/2015_additive_abtragende_Technologien/en_Bild
_1.jpg
ngsfelder/2015_additive_abtragende_Technologien/en_Bild
_2.jpg
te/One-pager-FVA_T1573_Webseite.pdf
ung/1-AAT/Webseite-AiF_ZIM__ProSerie__Kashevko.pdf
ung/1-AAT/Webseite-DFG%20Uh%20100-226-1.pdf
ung/1-AAT/DFG_UH_100-165.pdf
ung/1-AAT/DFG_UH_100-174.pdf
ung/1-AAT/DFG_UH_100-206.pdf
hung/1-AAT/DFG_UH_100-207.pdf
hung/1-AAT/AiF_ZIM_CO2_PVD.pdf
hung/1-AAT/DFG_UH_100-163.pdf
hung/1-AAT/AiF_ZIM_LCD.pdf
hung/1-AAT/DFG_UH_100-154.pdf
s/2017/C2.pdf
/files/2017/Manuscripts/DevelopmentofanExperimentalTest
SetupforInS.pdf
ml
s/2015/A3-3D%20Near%20net%20shaping.pdf
.123
.77
/parameter/en/font3/minhilfe/id/182914/?no_cache=1&
ask_mail=YsUzEQAI6m52NA2LQcDunzFpi9vvoopqiHbO67kTX4Y%3D
&ask_name=Erwin%20Krohmer%2C%20M.%20Sc.